Снаббер в импульсном блоке питания

Снаббер в импульсном блоке питания

Борьба с паразитными колебаниями в DCDC преобразователях

Итак, для начала определимся с объектом нашей борьбы. Для этого рассмотрим схему синхронного buck-конвертера и осциллограмму напряжения, снятую в точке 1 в момент открытия верхнего и закрытия нижнего транзисторов:

Видите синусоиду? Вот с этими паразитными колебаниями мы и будем бороться.

А зачем, собственно, нам это нужно? Да потому, что эти колебания могут вызвать ряд очень неприятных последствий. Одним из таких последствий является перенапряжение, которое может привести к повторному открытию нижнего транзистора или даже к его лавинному пробою. Кроме того, паразитные высокочастотные колебания могут попасть в нагрузку и привести к нарушению работы её компонентов.

Давайте разберёмся, откуда возникают эти паразитные колебания. Возникают они следующим образом: во время выключения нижнего транзистора на его встроенном защитном диоде кратковременно возникает мощный импульс обратного восстанавливающего тока. Поскольку в контуре всегда присутствует некоторая паразитная индуктивность и ёмкость, то образуется колебательный контур, в котором начинает циркулировать наш токовый импульс. Этот процесс продолжается то тех пор, пока вся энергия этого импульса не будет израсходована, после чего колебания прекратятся (полностью затухнут).

Теперь, поняв причину возникновения колебаний, становятся очевидными и пути борьбы с ними:

  1. уменьшение начальной энергии импульса;
  2. уменьшение паразитной индуктивности контура;
  3. уменьшение паразитной ёмкости контура;
  4. 4) использование для ослабления колебаний специальной схемы, известной у буржуев как снаббер (по-нашему — демпфер).

Остановимся подробнее на каждом из этих вариантов:

1) Для уменьшения начальной энергии импульса можно использовать MOSFET-ы со встроенными диодами Шоттки вместо обычных диодов, поскольку у диодов Шоттки меньше обратный восстанавливающий ток. Меньше импульс тока — меньше начальная энергия паразитных колебаний.

2) Паразитная индуктивность контура определяется разводкой платы. Всё это довольно сложно, но один совет можно дать: силовые шины на плате должны быть как можно короче, шире и прямее.

Никогда не задумывались, почему схема DC-DC преобразователя, собранная радиолюбителем «на проводках» может оказаться неработоспособной, хотя та же схема, с теми же номиналами элементов, но собранная на печатной плате, может вполне прилично работать? Виной этому как раз может быть очень большая паразитная индуктивность спаянной «на проводках» схемы (последствия читай выше).

3) Основной частью паразитной ёмкости контура является ёмкость между стоком и истоком транзистора (выходная ёмкость — Coss). Ёмкость Coss определяется из документации на транзистор. В документации обычно приводятся графики зависимости этой ёмкости от напряжения между стоком и истоком. Так что качаете доку на транзисторы, которые предполагается использовать, и выбираете тот, у которого Coss минимальна.

4) Поскольку, в любом случае, невозможно полностью избавиться ни от паразитной ёмкости, ни от паразитной индуктивности (тем более, когда вы проектируете не просто отдельный блок питания, а блок питания в составе какой-либо платы, то чаще всего у вас нет возможности сделать оптимальную разводку), то может получиться так, что величина паразитных колебаний в сделанном вами девайсе абсолютно вас не устроит. В этом случае (когда все остальные пути исчерпаны) для ослабления колебаний можно использовать снаббер. Причём, могу сказать по собственному опыту, что правильно рассчитанный снаббер способен ослабить колебания довольно эффективно.

Простейший снаббер — это последовательно соединенные конденсатор и резистор. Расчёт такого снаббера заключается в определении номиналов конденсатора и резистора, а так же в определении мощности резистора. Как рассчитываются эти величины:

1) Номинал резистора снаббера рассчитывается исходя из того, что оптимальное сопротивление резистора должно быть равно характеристическому импедансу (сопротивлению) колебательного контура:

, где L и C — это соответственно паразитные индуктивность и ёмкость

Как было отмечено выше, паразитная ёмкость — это в основном ёмкость между стоком и истоком транзистора (выходная ёмкость Coss). Её величину можно определить из документации на транзистор. Но как найти величину паразитной индуктивности? Эта величина определяется расчётным путём по осциллограмме. Для этого измеряем осциллографом частоту паразитных колебаний и из соотношения:

f=1/(2*π*√ L*C ), находим паразитную индуктивность: L=1/(4*π 2 *f 2 *C)

2) Величина ёмкости снаббера обычно является компромиссным решением, поскольку, с одной стороны, чем больше ёмкость — тем лучше сглаживание (меньше число колебаний), с другой стороны, каждый цикл ёмкость перезаряжается и рассеивает через резистор часть полезной энергии, что сказывается на КПД (обычно, нормально рассчитанный снаббер снижает КПД очень незначительно, в пределах пары процентов).

Так вот, на практике величину этой ёмкости обычно определяют из условия, что постоянная времени снаббера должна быть в 3 и более раз больше периода паразитных колебаний:

Rsn*Csn=3*T=3/f, где T и f — это, соответственно, период и частота паразитных колебаний, отсюда Csn=3/(Rsn*f)

3) Мощность резистора оценивается по величине энергии, которую он каждый цикл должен рассеивать вследствие перезаряда конденсатора Csn:

PRsn=(1/2)*Csn*Uin 2 *fs, где Uin и fs — это, соответственно, входное напряжение преобразователя и частота, на которой он работает

Читайте также:  Лучшие 2 DIN магнитолы 2020 года

В дополнение, хочется сказать, что располагать элементы снаббера рекомендуется как можно ближе к силовым ногам транзистора:

Защита от перенапряжения: что выбрать?

Защита от коммутационных выбросов напряжения схем на основе тиристоров или транзисторов с полевым управлением – рядовая задача в проектировании практически любого преобразователя. Для выполнения данной задачи существует ряд стандартных схем именуемых снабберными цепями. Снабберы, в свою очередь, могут состоять из пассивных или активных элементов, или могут совмещать их в себе (например, RCD-снабберы). Схемы такого рода цепей хорошо известны и не требуют дополнительного рассмотрения. Но, зачастую, при проектировании снабберов возникает ряд вопросов с выбором элементной базы.

Итак, какой тип конденсатора выбрать? Что лучше –ограничитель или варистор? Можно ли
использовать вместо специализированных ограничителей обычные стабилитроны? Таким образом, вопросы с комплектацией могут значительно повлиять на итоговую схему снаббера и как, в таком случае, не ошибиться? Ниже пойдёт речь о типовых проблемах с выбором элементной базы, которые, как показывает практика, чаще всего возникают при проектировании снабберных цепей. Снабберы могут выполнять две функции: снижении скорости нарастания напряжения (C-RC-RCD-снабберы) или ограничение амплитуды выброса напряжения (снабберы на основе супрессоров, стабилитронов или варисторов). Разумеется, эффективнее всего будут работать снабберы выполняющие обе эти функции. Более того, в состав снабберов второго типа, как правило, так или иначе,входят конденсаторы. Конденсатор, в некотором смысле, это основа почти любой снабберной цепи и первый вопрос, возникающий после осуществления теоретических расчётов: какой тип конденсатора выбрать?
Существует два основных вида конденсаторов, которые, теоретически, можно использовать в
снаббере: это плёночные и керамические конденсаторы. Из отечественного к первой группе, прежде всего, относятся конденсаторы серий К73 и К78; ко второй группе–конденсаторы серий К10 и К15. На практике, в качестве снабберов, самыми подходящими считаются конденсаторы К78-2, но чаще всего применяются К73-17, так же часто применяются керамические конденсаторы К10-17 или К10-69 (для относительно низковольтных схем). Существует мнение, что в качестве снабберов нужно использовать только плёночные конденсаторы, т.к. их паразитные составляющие (особенно паразитная индуктивность и тангенс угла потерь) намного меньше, чем для керамических конденсаторов. Сравниваем тангенс угла потерь: для К78-2–0,001; для К10-69–0,0015; для К73-17–0,008. Отсюда следует, что, вроде бы, керамический конденсатор несущественно хуже плёночного К78-2 и даже гораздо лучше К73-17. Если сравнить паразитную индуктивность плёночных и керамических конденсаторов, то и здесь разницы почти нет: их индуктивность будет составлять от единиц до десятков нГн и даже более того, этот параметр по большей части обусловлен габаритными размерами конденсатора, типами выводов и, в конце концов, качеством монтажа, но не типом.
Получается, разницы нет? В своё время нам была поставлена задача заменить конденсатор К73
— 17 на керамические чип-конденсаторы (требование конструкции). В итоге на конденсаторе К73-17 за несколько лет эксплуатации не были ни одного выхода из строя этого конденсатора; с керамическим конденсаторами–два выхода из строя при трёх проведённых испытаниях. Отсюда вывод: плёночные конденсаторы предпочтительнее, но скорее не из-
за своих параметров, а из-за своей «живучести». Плёночные конденсаторы гораздо более устойчивы к значениям du/dt и di/dt, к значительным импульсным токам и перенапряжениям и именно поэтому выбор в сторону плёночных конденсаторов–правильный выбор.
Конечно, и по паразитным составляющим тоже можно сказать, что плёночные лучше, но это если только речь идёт о специализированных конденсаторах. Например, специализированные снабберные плёночные конденсаторы импортного производства имеют тангенс угла потерь 0,0001 (на порядок лучше К78-2 и почти в сто раз лучше К73-17) и собственную
индуктивность в несколько нГн, но это именно специальные конденсаторы. Отсюда вывод: если речь идёт о больших мощностях (от десятков кВт), то однозначно–специализированные снабберные конденсаторы.Если мощность меньше, но напряжение относительно высокое –то так же однозначно плёночные общего назначения; если мощность небольшая и напряжение низкое (например, из практики, при мощности около сотен Вт и напряжении порядка десятков Вольт, проблем со снабберами на керамических конденсаторах не наблюдалось), то можно обойтись керамическими конденсаторами. Т.е., как видим, вопрос выбора типа конденсатора
–скорее вопрос надёжности; эффективность же его работы в качестве снаббера–это уже вопросы расчётов и монтажа.
Последовательно снабберному конденсатору зачастую (хотя и не обязательно), ставится резистор. Разумеется, мощность и номинал резистора рассчитываются, но, опять же, не каждый
резистор можно ставить в снабберную цепь. Как правило, применяются резисторы следующих типов: проволочные, металлоплёночные, углеродистые. Проволочные резисторы категорически не подходят для снабберных цепей по причине недопустимо большой паразитной индуктивности. Металлоплёночные резисторы применять можно, хотя и у них индуктивность оставляет желать лучшего. Наилучший вариант–углеродистые резисторы (например, серия С1-4). Помимо меньшей индуктивности данный тип резисторов выгодно отличается от прочих тем, что они стойки к импульсным токам и импульсам перенапряжения. Хотя, использование металлоплёночных резисторов (самые популярные–С2-33) тоже допустимо.
Насчёт диода, если таковой используется в снабберной цепи, пожалуй, говорить не стоит, т.к.
понятно, что его пробивное напряжение и допустимый ток должны соответствовать схеме, а время обратного восстановления должно быть как можно меньше. Перейдём к той части снаббера, которая отвечает за ограничение напряжения.
В снабберах, как уже было сказано, с целью ограничения выбросов напряжения могут устанавливаться стабилитроны, ограничители напряжения (супрессоры), и варисторы. Что, для какой схемы и по каким критериям выбрать?
Основными критериями выбора элемента ограничения, помимо собственно пробивного
напряжения, должны являться его мощность и быстродействие. При чём, если мощность можно нарастить последовательной установкой элементов, то сделать быстродействие лучше, чем обеспечивает производитель– не представляется возможным. Из всех представленных ограничителей наибольшим быстродействием обладает супрессор.
Производителями супрессоров заявляется быстродействие порядка нескольких нс, а иногда и меньше. Но это в тестовых схемах. На практике супрессор, если и реагирует почти мгновенно, всё-таки открывается относительно долго и время с момента достижения напряжением пробивного напряжения супрессора до начала спада напряжения импульса обычно составляет около 10 нс и во многом зависит от тока импульса. В схемах с обратными индуктивными выбросами с токами в сотни Ампер время начала ограничения может составлять и вовсе десятки нс, и именно поэтому, к слову сказать, рекомендуется использование ограничителей напряжения совместно с классическими снабберами, обеспечивающими снижение du/dt, в противном случае схема ограничения просто не успевает полноценно сработать. В плане ВАХ прибор почти аналогичный супрессору–стабилитрон. Но если по мощности можно подобрать стабилитрон близкий ограничителю напряжения (в плане допустимой мощности импульса), то по быстродействию стабилитроны значительно уступают супрессору. Конечно, стабилитрон можно использовать в качестве ограничителя, но со скоростями не более нескольких кВ/мкс,в то время как супрессоры могут работать со скоростью изменения напряжения на порядок больше. И если раньше стабилитроны имело смысл использовать в снабберных схемах для изделий специального назначения (т.к.высоковольтных супрессоров с приёмкой «5» не вып
ускалось), то сейчас необходимость в этом отпала, т.к. отдельными производителями освоено производство супрессоров «специального назначения».
В отличии от супрессора и стабилитрона варистор не является активным элементом, в полном
смысле этого слова, представляя собой специализированный резистор. Быстродействие варисторов, как заявляется, составляет порядка нескольких десятков нс. Для сравнения, как уже было отмечено, заявляемое быстродействие супрессоров–около нс. Таким образом, варистор на порядок медленнее супрессора. Эту разницу подтверждает и практический случай:
в транзисторном преобразователе значительно грелись ограничители напряжения и было решено попробовать варисторы, т.к. последние могут работать с относительно большими мощностями. В итоге, если схема с ограничителями грелась, но работала без выходов из строя, то схема на варисторах вышла из строя при первом же включении. Однако, указать реальное быстродействие варисторов автор не может, т.к. не имел достаточного опыта работы
с ними. Другой, не менее критичный параметр,-предельно-допустимая мощность импульса. Здесь на первом месте стоит варистор, далее– супрессор и стабилитрон. При чём, при равных массогабаритных показателях, супрессор значительно выигрывает у стабилитрона. В итоге область применения варисторов и супрессоров становится очевидной: варисторы применяются в схемах с большой мощностью импульса, но низким (относительно) значением du/dt; супрессоры–наоборот: в схемах с большим du/dt, но кратковременными импульсами. Первый тип схем преобразователей–преобразователи на основе тиристоров (большая мощность, скорость du/dt измеряется в сотнях В/мкс); второй тип–преобразователи на основе IGBT-или MOSFET-транзисторов, ведь именно работа транзисторов в ключевом режиме характеризуется малой длительностью выбросов напряжения (не более сотен нс; очень редко–мкс), но при этом значительным du/dt, до десятков кВ/мкс. Таким образом, если тиристорная схема, то варисторы; если транзисторная, то супрессоры. Стабилитроны тожеможно применять, то только в низковольтных транзисторных схемах с малыми скоростями изменения напряжения.
Например, стабилитроны BZX55C18, установленные в цепи затвора полевого транзистора, ведут себя ни чуть ни хуже симметричных супрессоров типа 1,5КЕ18СА. Как правило, выбор очевиден. Более того, в практике построения снабберов уже сложились определённые «традиции», как в плане схемотехники, так и в плане элементной базы. Конечно, если уже имеется какая-то комплектация и нет возможности или проблематично приобрести другую комплектацию,то можно поставить что-то своё, из того что есть. Но при разработках лучше, всё-таки, закладывать изначально специализированные изделия и только если такой путь оказывается нерациональным, то можно обратиться к помощи элементов общего назначения. Что именно выбрать и для каких схем–сказано выше.

Читайте также:  Зарплата электрогазосварщика (реальные цифры)

Содержание данной статьи носит исключительно рекомендательный характер, основывается на личном опыте и, разумеется, не является панацеей от всех проблем. Но, тем не менее, указанные рекомендации могут помочь разработчику в такой задаче, как выбор комплектации для снабберных цепей защиты.

One thought on “ Защита от перенапряжения: что выбрать? ”

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Что такое снаббер? Подробное описание

Снаббер – это демпфирующее устройство, работающее в качестве фильтра низкой частоты, которое выполняет действие по замыканию на себе тока переходного процесса.

Предназначение снаббера

Устройство предназначено для подавления индуктивных выбросов, для понижения значения перенапряжений в переходных процессах, которые появляются при коммутационных действиях с силовыми полупроводниками. Они практически незаменимы для снижения влияния паразитной генерации, которая способствует снижению величины нагрева обмоток трансформатора и для предохранения от температурного перегрева диодов и мощных транзисторов.

Достигается это с помощью облегчения теплообмена при работе ключа. При этом емкость служит для понижения скорости нарастания напряжения, а индуктивность снижает нарастание величины тока. При снижении значения динамических потерь в силовом ключе происходит формирование траектории переключения: при этом параллельно подключенные емкостные конденсаторы понизят скорость нарастания напряжения. Индуктивность в коммутационных цепях ограничивает скорость увеличения тока.

Снаббер выполняет задачу по предотвращению ошибочного включения семистора, которое может произойти в результате сетевых помех. Полезно применение снаббера в качестве ограничителя перенапряжений для ключевого транзистора, которые появляются во время коммутации. В этом случае модель может применяться в устройствах импульсных источников питания.

Конфигурация снаббера

Устройство необходимого к использованию снаббера зависит от величины нагрузки и типа питающей сети, она связана с типом силового компонента и частоты, на которой он работает.

Читайте также:  Машины Маруся; Лада мастер

Рис. №1. Конфигурация снабберных конденсаторов.

Самый простой снаббер считается импульсным конденсатором незначительной емкости, который подключается параллельно силовому ключу. В конструкции обязательно должен присутствовать, подключенный параллельно конденсатору резистор, он помогает избавиться от потерь и утечек в паразитном колебательном контуре.

Основное требование к конструкции снабберной емкости – обеспечить помимо минимальной величины распределенной индуктивности, еще и удобство присоединения к терминалам силового модуля. В качестве снаббера недопустимо использовать обычные конденсаторы, как на (рис.1а).

Методика расчета снабберной цепи

Выполнение расчета связано с механизмом действия снабберной цепи. Номинальное значение конденсатора высчитывается по определенному значению уровня перенапряжения Vos и величины энергии, находящейся в запасе в паразитной индуктивности шины Lв при коммутировании токовой величины Iреак:

С помощью снабберов происходит формирование траектории переключения, где параллельно подключенные емкости снижают быстроту нарастания значения напряжения, а индуктивности служат для ограничения скорости увеличения токовых значений.

Вычисление емкости снаббера и максимально эффективного значения индуктивности можно выполнить если известны значения напряжения ΔV1 и ΔV2, при этом их величина С2 будет прямо пропорциональна показателям паразитной индуктивности. Формула расчета емкости будет иметь такой вид:

Таким образом, становится ясно, что корректная типология и силового каскада, которая может обеспечить минимальную величину и значение LDC дает возможность снизить требования к снабберным цепям.

Для определения расчета паразитного контура DC необходимо проводить коррекционные замеры параметров снабберной схемы, за основу берутся результаты экспериментальной проверки.

Основой выбора служит минимальная величина перенапряжения и отсутствие опасных осцилляций.

Необходимо знать, снаббер не сможет помочь силовому ключу при перенапряжении плохо подобранной DC-шине, которая имеет значительную площадь токовой петли.

При подборе конденсатора учитываются такие его параметры:

  • Разрешенное напряжение для цепей постоянного тока VRmax;
  • Максимальное значение напряжения и тока пульсации Vnnsили Inns;
  • Величину емкости и индуктивности;
  • Срок эксплуатации.

Желательно учитывать, что для модулей IGBT величина напряжения шины не должна быть больше значения 9000В, для такого значения рекомендуется применять снаббер с VRmax= 1000В. Величины емкости должно хватать для подавления и сглаживания пиковых сигналов, появляющихся при отключении IGBT, емкость может быть в пределах от 0,1 до 1 мкФ.

Рис.№ 2. Классический пример использования конструкции с высокоиндуктивной шиной с применением параллельно соединенных проводников звена постоянного тока. Даже с наличием снаббера при коротком замыкании произойдет скачек напряжения более, чем в 1000 раз.

При некорректной типологии шины-DC нецелесообразно увеличивать емкость снаббера – это приводит к увеличению колебательности паразитного контура.

Типы снабберных схем

Рис. №2. Схема снаббера. (а) – обычный высоковольтный конденсатор. (б) – схема для применения в низковольтных преобразователях, рассчитанных на высокий ток с использованием MOSFET-ключами. (в) – схема цепи, ограничивающая скорость управления тиристорными ключами. В этом случае, снаббер устанавливается на всех плечах полумоста, схема состоит из диода обладающего быстрой скоростью и резистора. Они выполняют функцию разряда и ограничителя тока разряда и служат для разделения зарядных цепей. (г) – схема для снижения паразитной индуктивности, она характеризуется подключением снаббера к коллектору и эмиттеру всех транзисторов полумоста, схема используется редко, главным образом из-за сложности.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Ссылка на основную публикацию
Смарт диагностика стиральной машины LG — что это
Диагностика стиральной с помощью телефона Gearmix Владельцы современных, высокотехнологичных стиральных машин знают на собственном опыте, что их поломка приносит массу...
Сколько стоят номера на машину в 2020 году
Сколько стоят красивые номера на авто Вспомните, с каким трепетом вы ожидали получения новенького автомобиля, а вместе с ним –...
Сколько стоят органы человека
Сколько стоит мозг Регистрация Вход -Метки -Рубрики Разное (1139) Интерьеры, ремонт (1058) Интересно (804) Живопись и картинки (709) Лирика (608)...
Смартфон вместо антирадара тест лучших приложений
Исследовательская компания РАДАР Маркетинговые исследования и консультирование Без страсти у вас не будет энергии, без энергии у вас не будет...
Adblock detector