Теплопроводность стали и других сплавов меди, латуни и алюминия, теплопередача

Теплопроводность стали и других сплавов меди, латуни и алюминия, теплопередача

Теплоотдача расплавленных металлов

Теплоотдача расплавленных металлов

  • Жидкометаллический теплоноситель обеспечивает высокую прочность процесса теплопередачи и может использоваться при повышенных температурах без повышения давления в системе. Физические свойства расплавленного металла существенно отличаются от свойств обычных теплоносителей. Жидкий металл характеризуется высокой теплопроводностью и низкой теплоемкостью. Критерий Прандтля для такого хладагента значительно меньше 1. Экспериментальные исследования теплообмена в жидких металлах показали, что скорость теплообмена зависит от загрязнения металла оксидом и смачиваемости подлежащей обработке поверхности.

При технических расчетах вычисление интеграла в уравнении (7-18) или (7-19) несколько утомительно. Людмила Фирмаль

В случае чистого расплавленного металла (без оксидов) смачиваемость поверхности незначительно влияет на тепловую прочность transfer. In наличие оксидов, теплопередача на несмокших поверхностях не сильнее, чем на влажных поверхностях. Это, очевидно, связано с тем, что оксиды легче осаждаются на поверхности, которые менее подвержены смачиванию, что повышает тепловое сопротивление. Экспериментальные и теоретические исследования теплообмена расплавленного металла показали, что вместо эталонных Pe и Pr в уравнение подобия удобнее ввести эталон Pe = KePr.

  • Результаты экспериментального исследования теплообмена жидких металлов в турбулентных потоках в трубах описаны следующим образом уравнение подобия. Для оксидов металлов высокой чистоты, подвергающихся надежному смачиванию стенок труб Н2 = 4.8 + 0.014 Фе? а. (7.25 )) Если происходит загрязнение металла и поверхность теплообмена не влажная N ^ = 3,3 + 0,014 Fe», г.

В некоторых технических приложениях чаще задается 230 , тепловой поток на поверхности пластины, нем температура стенки. Людмила Фирмаль

Эти уравнения: Pe> 10*, Pe = 2 * 10a—2•10*, Pr = 4 * 10 — ⁸ −3 * 10-действительны для ’и y> 30.Для короткой трубы коэффициент теплопередачи следует умножить на аналогичную формулу, поправочный датчик Е, который определяется уравнением В этой главе описывается процесс, при котором силы инерционной массы и гравитационной массы оказывают существенное влияние на интенсивность теплопередачи.

  • Примеры решения задач по теплотехнике
Аналитический метод расчета теплоотдачи в трубе Активное и консервативное воздействия массовых сил на поток
Результаты экспериментального исследования теплоотдачи в трубах и каналах Дополнительное условие подобия потоков в полях массовых сил

Обо мне

Как заказать?

Отзывы

Супер!
Присылайте в whatsapp:

+79219603113

Если у вас установлен whatsapp, нажмите:

Написать сообщение

Если whatsappа нет, установите и добавьте меня, вот инструкция.

f9219603113@gmail.com

Режим работы с 07:00 утра до 24:00 ночи (часовой пояс Москва)

Образовательный сервис позволяющий получить дополнительные знания


Если не указано иное, контент на этом сайте лицензирован под международной лицензией Creative commons attribution 4.0

© 2000 – 2019 ИП «Фирмаль Людмила Анатольевна»

Все авторские права на размещённые материалы сохраняются за правообладателями. Любое коммерческое и другое использование кроме предварительного ознакомления запрещено. Публикация предоставленных материалов не преследует за собой коммерческой выгоды. Публикация являются рекламой бумажных изданий этих документов. Я оказываю услуги по сбору, компоновке и обрабатыванию информации по теме заданной мне Клиентом. Результат работы не будет готовым научным трудом, но может быть источником для его самостоятельного изучения и написания.

О теплопроводности меди и ее сплавов

Высокая теплопроводность меди и другие ее полезные характеристики послужили одной из причин раннего освоения этого металла человеком. И по сей день медь и медные сплавы находят применение почти во всех областях нашей жизни.

Немного о теплопроводности

Под теплопроводностью в физике понимают перемещение энергии в объекте от более нагретых мельчайших частиц к менее нагретым. Благодаря этому процессу выравнивается температура рассматриваемого предмета в целом. Величина способности проводить тепло характеризуется коэффициентом теплопроводности. Данный параметр равен количеству тепла, которое пропускает через себя материал толщиной 1 метр через площадь поверхности 1 м2 в течение одной секунды при единичной разнице температур.

Читайте также:  Фотографии КИА Рио Х Лайн - KIA Rio X-Line Club
Материал Коэффициент теплопроводности, Вт/(м*К)
Серебро 428
Медь 394
Алюминий 220
Железо 74
Сталь 45
Свинец 35
Кирпич 0,77

Медь обладает коэффициентом теплопроводности 394 Вт/(м*К) при температуре от 20 до 100 °С. Соперничать с ней может только серебро. А у стали и железа этот показатель ниже в 9 и 6 раз соответственно (см. таблицу). Стоит отметить, что теплопроводность изделий, изготовленных из меди, в значительной мере зависит от примесей (впрочем, это касается и других металлов). Например, скорость проводимости тепла снижается, если в медь попадают такие вещества, как:

  • железо;
  • мышьяк;
  • кислород;
  • селен;
  • алюминий;
  • сурьма;
  • фосфор;
  • сера.

Если добавить к меди цинк, то получится латунь, у которой коэффициент теплопроводности намного ниже. В то же время добавление других веществ в медь позволяет существенно снизить стоимость готовых изделий и придать им такие характеристики, как прочность и износостойкость. К примеру, для латуни характерны более высокие технологические, механические и антифрикционные свойства.

Поскольку для высокой теплопроводности характерно быстрым распространение энергии нагрева по всему предмету, медь получила широкое применение в системах теплообмена. На данный момент из нее изготавливают радиаторы и трубки для холодильников, вакуумных установок и автомашин для быстрого отвода тепла. Также медные элементы применяют в отопительных установках, но уже для обогрева.

Медный радиатор отопления

Чтобы поддерживать теплопроводность металла на высоком уровне (а значит, делать работу устройств из меди максимально эффективной), во всех системах теплообмена используют принудительный обдув вентиляторами. Такое решение вызвано тем, что при повышении температуры среды теплопроводность любого материала существенно понижается, ведь теплоотдача замедляется.

Алюминий и медь – что лучше?

У алюминия есть один минус по сравнению с медью: его теплопроводность в 1,5 раза меньше, а именно 201–235 Вт/(м*К). Однако по сравнению с другими металлами это достаточно высокие значения. Алюминий так же, как и медь, обладает высокими антикоррозийными свойствами. Кроме того, он имеет такие преимущества, как:

  • малая плотность (удельный вес в 3 раза меньше, чем у меди);
  • низкая стоимость (в 3,5 раза меньше, чем у меди).

Алюминиевый радиатор отопления

Благодаря простым расчетам получается, что алюминиевая деталь может оказаться дешевле медной практически в 10 раз, ведь она весит намного меньше и изготовлена из более дешевого материала. Этот факт наряду с высокой теплопроводностью позволяет использовать алюминий в качестве материала для посуды и пищевой фольги для духовых шкафов. Главный недостаток алюминия состоит в том, что он является более мягким, поэтому его можно использовать только в составе сплавов (например, дюралюминия).

Для эффективного теплообмена важную роль играет скорость отдачи тепла в окружающую среду, и этому активно способствует обдув радиаторов. В результате меньшая теплопроводность алюминия (относительно меди) нивелируется, а вес и стоимость оборудования снижаются. Эти важные плюсы позволяют алюминию постепенно вытеснять медь из использования в системах кондиционирования.

Использование меди в электронике

В некоторых отраслях, к примеру, в радиопромышленности и электронике, медь является незаменимой. Дело в том, что этот металл по природе своей очень пластичен: его можно вытянуть крайне тонкую проволоку (0,005 мм), а также создать другие специфические токопроводящие элементы для электронных приборов. А высокая теплопроводность позволяет меди крайне эффективно отводить неизбежно возникающее при работе электроприборов тепло, что очень важно для современной высокоточной, но в то же время компактной техники.

Актуально использование меди в тех случаях, когда требуется сделать наплавку определенной формы на стальную деталь. При этом применяется шаблон из меди, который не соединяется с привариваемым элементом. Использование алюминия для этих целей невозможно, так как он будет расплавлен или прожжен. Стоит также упомянуть, что медь способна выполнить роль катода при сварке угольной дугой.

1 — шестерня, 2 — крепления шаблонов, 3 — наплавляемый зуб шестерни, 4 — медные шаблоны

Недостатки высокой теплопроводности меди и ее сплавов

Медь обладает куда более высокой стоимостью, чем латунь или алюминий. При этом у данного металла есть свои недостатки, напрямую связанные с его достоинствами. Высокая теплопроводность приводит к необходимости создавать специальные условия во время резки, сварки и пайки медных элементов. Так как нагревать медные элементы нужно намного более концентрировано по сравнению со сталью. Также часто требуется предварительный и сопутствующий подогрев детали.

Не стоит забывать и о том, что медные трубы требуют тщательной изоляции в том случае, если из них состоит магистраль или разводка системы отопления. Что приводит к увеличению стоимости монтажа сети в сравнении с вариантами, когда применяются другие материалы.

Пример теплоизоляции медных труб

Сложности возникают и с газовой сваркой меди: для этого процесса потребуются более мощные горелки. При сварке металла толщиной 8–10 мм потребуются две-три горелки. Пока одна горелка используется для сварки, другими ведется подогрев детали. В целом сварочные работы с медью требуют повышенных расходов на расходные материалы.

Следует сказать и о необходимости использования специальных инструментов. Так, для резки латуни и бронзы толщиной до 15 см понадобится резак, способный работать с высокохромистой сталью толщиной в 30 см. Причем этого же инструмента хватит для работы с чистой медью толщиной всего лишь в 5 см.

Плазменная резка меди

Можно ли повысить теплопроводность меди?

Медь широко используется при создании микросхем электронных устройств и призвана отводить тепло от нагреваемых электрическим током деталей. При попытке увеличить быстродействие современных компьютеров разработчики столкнулись с проблемой охлаждения процессоров и других деталей. В качестве одного из решений применялся вариант разбиения процессора на несколько ядер. Однако данный способ борьбы с перегревом себя исчерпал, и сейчас требуется искать новые проводники с более высокой теплопроводностью и электропроводимостью.

Одним из решений этой проблемы является недавно открытый элемент графен. Благодаря напылению из графена теплопроводность медного элемента увеличивается на 25%. Однако пока изобретение находится на уровне разработки.

Какие показатели теплопроводности металла считаются нормой?

У каждого металла есть ряд параметров, характеризующие его как материал. Их нужно учитывать при изготовления различных предметов, заготовок, повышения эксплуатационных характеристик. Один из главных параметров — теплопроводность металлов. Этот показатель учитывают производители при изготовлении термодатчиков, радиаторов, холодильных установок.

Металлообрабатывающий завод

Определение и значение

Теплопроводность — способность материалов переносить энергию тепла от разогретых поверхностей к холодным участкам. Теплопроводящими могут быть жидкости, газы, твердые вещества. Это способность тела проводить тепловую энергию через себя, передавать ее другим предметам.

Коэффициент теплопроводности — величина, равняющаяся количеству теплоты, которая переносится через определенную площадь поверхности за 1 секунду.

Впервые этот параметр был установлен в 1863 году. Ученые доказали, что передача теплоты осуществляется за счет движения свободных электронов. В металлических заготовках их больше, чем в предметах из другим материалов.

Какие факторы влияют на показатель?

Чтобы понять, как повысить или понизить показатель разных видов металла, нужно знать какие факторы влияют на этот параметр:

  • размеры изделия, площадь поверхности;
  • форму заготовки;
  • химический состав;
  • пористость материала;
  • вид материала;
  • изменение температуры воздействия.

Также внимание нужно уделить строению кристаллической решетки.

Металлические листы (Фото: Instagram / metall61_armatura_dostavka)

Какие показатели считаются нормой?

Коэффициент учитывается в различных сферах производства. Этот параметр нужно учитывать при изготовлении:

  • утюгов;
  • нагревательных приборов;
  • холодильных камер;
  • подшипников скольжения;
  • оборудования для нагревания воды;
  • отопительных приборов.

Изучая свойства различных материалов, специалисты составили таблицы с показателями теплопроводности для каждого из них. Их можно найти в специализированных справочниках.

Для стали

Справочники объединяют в себе расчетные данные для разных материалов:

  • стали, которая используется при изготовлении режущего инструмента;
  • сплавов для производства пружин;
  • стали, насыщенной легирующими добавками;
  • сплавов, стойких в образованию ржавчины;
  • материалов, устойчивых к высокой температуре.
Сталь Теплоемкость Дж (кг*°C)
Сталь 45 469
Сталь 40 Х 620
9Х2МФ 500
60Х2СМФ 660
Х12МФ 580
40Х13 452
15ХМ 486

Данные в таблицы собирались для стали, которая подвергалась термической обработке при температуре от -263°C до +1200°C.

Термообработка (Фото: Instagram / energomashvologda)

Для меди, никеля, алюминия и их сплавов

Показатель для металлов и сплавов будет отличаться для цветных и черных металлов. У железа и цветных металлов разная структура, температура плавления, строение кристаллической решетки.

В таблицах можно найти информацию о химическом составе меди, никеля, алюминия. Особенности:

  • самая высокая теплопроводность у никеля, магния, меди и сплавов на их основе.
  • самая низкая теплопроводность у инвара, нихрома, алюминия, олова.

Можно ли повысить показатель?

Ученые провели эксперимент по увеличение параметра с использованием графена. Они наносили слой графена на медные поверхности. Для этого применялась технология осаждения графеновых частиц из газа.

Показатель теплопроводности медной заготовки увеличился, поскольку зерна в структуре стали больше. Благодаря этому повысилась проходимость свободных электронов. При нагревании меди без графенового напыления размер зерен не был увеличен.

Также внимание нужно уделить влиянию концентрации углерода на показатель. У стали с высоким содержанием углерода он выше. Благодаря этому из высокоуглеродистой стали изготавливаются трубы, запорная арматура.

Графен (Фото: Instagram / kalabs_lab)

Методы изучения и измерения

Прежде чем начинать изучение и измерение показателя теплопроводности нужно выбрать материал, узнать технологию его какой технологии получения. Например, металлические заготовки одинакового размера, формы, изготовленные литьем или порошковой металлургии будут отличаться основными параметрами. То же самое касается сырых металлов в сравнении с тем, которые прошли термическую обработку.

Чтобы получить точные данные, нужно выбирать заготовки прошедшие одинаковые этапы обработки. Они должны быть одного размера, формы, похожи по химическому составу.

Специалисты выделяют ряд актуальных методик измерения коэффициента теплопроводности, применяемыми предприятиями:

  1. TCT (Методика разогретой проволоки).
  2. HFM (Методика теплового потока).
  3. GHP (Технология раскаленной охранной зоны).
  4. Релакционно-динамический способ. С его помощью проводятся массовые измерения технических характеристик. При измерении нужно выбирать заготовки с одинаковой отражающей способностью поверхностей.

При изготовлении различных предметов, деталей, оборудования из металла, специалисты учитывают отдельные технические характеристики. Например, при производстве теплообменников, радиаторов, систем охлаждения, нагрева воды, главный параметр — коэффициент теплопроводности. На него влияет химическое строение материала, кристаллическая решетка, пористость, форма, размеры заготовки.

Ссылка на основную публикацию
Теплоемкость и теплопроводность металлов и сплавов
Теплопроводность чистых металлов Теплопроводность металлов в зависимости от температуры В таблице представлена теплопроводность металлов в зависимости от температуры при отрицательных...
Сцепление для мотоблока своими руками, самодельное
Сцепление на мотоблок - как сделать своими руками Автомеханик, специализируется на С/Х технике Без качественной работы сцепления невозможна полноценная работа...
Сцепление Лада Гранта характеристики, возможные поломки, методы их устранения
Как отрегулировать сцепление на Лада Гранта фото, видео, два способа На автомобилях ВАЗ применён трос сцепления с автоматической регулировкой. Сам...
Теплообменник для газового котла ремонт, как снять и почистить
Ремонт газовых котлов Навьен – что можно исправить самостоятельно Газовый отопительный прибор сегодня популярен среди владельцев квартир и частных домов....
Adblock detector